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Abstract. Diffraction ofx-rays in radiation froma relativisticoscillator formed by anexternal 
ultrasonic(1aser) wavein acrystalisconsidered. Ullrasonic (laser) excitation,in thegeneral 
case, leads not only to the formation of a transverse oscillator but also to the formation ofa 
set of lattices by which the emitted photons are diffracted. It is shown that, in the particular 
case of a transverse ultrasonic wave excitation at r . b =% 1, we can neglect the ultrasonic 
wave influence on diffraction process. Just this situation isconsidered indetail in the present 
paper. The expressions for the angular and spectral distributions ofconsidered radiation are 
derived. It is shown that the radiation spectrum, in this case, is more complicated than that 
of ordinary channelling radiation and its intensity in the vicinity of the Bragg frequency can 
be even higher than the intensity of the latter. 

1. Introduction 

X-ray and y-radiationof relativisticelectrons (positrons) moving at asmall angle relative 
to the crystallographic planes (axes) is analogous to the radiation of a relativistic one- 
dimensional (two-dimensional) oscillator with a frequency in the laboratory frame, 
determined by the difference between the energy zones E", E, of transverse motion: 
Q,, = E. - &,[l, 21. Theradiationfrequencyisevaluatedfrom the Dopplereffect (which 
is complex and anomalous in the general case). 

This radiation, known in the literature as channelling radiation (see, e.g., [3]), 
experiences considerable changes under the conditions of diffraction of quanta, gen- 
erated in a crystal. According to [U] in this case a new phenomenon occurs, which 
may be called the diffraction radiation of a relativistic oscillator, formed by channelled 
particles. A characteristic property of this radiation is that, unlike the usual radiation 
process of a relativistic particle, when quanta are emitted in the angular interval A 8  - 
l/ywhere y is the particle Lorentz factor, the diffraction x-ray radiation is also observed 
at a large angle relative to the particle velocity; this results in the formation of a typical 
diffraction pattern. 

A relativistic oscillator in a crystal not only may be formed as a result of radioactive 
transitions betweenzonesofchanneUed particle transverse motion but also isobservable 
during particle motion in a laser wave and when a channelled particle moves in a plane 
(axial) channel, bent by a variable external field (ultrasonic or laser wave), i.e. in some 
kind of an electrostatic undulator [7,8]. In this case the oscillator frequency in the 
laboratory frame Q' = K ~ U  - C2 where K is the wavevector of an external wave in a 
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Figure 1. Qualitative illustration ofelectron motionandgeometryof photondiffraction. The 
oscillation ampliNde of medium atoms is parallel to the cleclron oscillation amplitude in 
ultrasonicwave(bIIn),risplacednearthex-rplane,as(b. T) 1. 

crystal, S2 is its frequency (the z axis is chosen along the direction of an average 
-particle velocity U). The radiation frequency is determined by the Doppler effect: w = 
Q’[1 - &n(w) cos LY] where 6, = u/c, n(w)  is the index of refraction at a frequency CO, 

Bistheradiationangleandcis thespeedoflight. Naturally, thepossibilityofadiffraction 
radiation phenomenon in itself does not depend on the mechanism of oscillator forma- 
tion. The present paper gives the theory of the diffraction radiation from an oscillator 
formed by an external wave. The explicit formula determining the radiation intensity in 
the diffraction peak is obtained. 

2. The trajectory ofachannelledparticleinacrystal beingsubjected toa variableexternal 
field 

Thus, let a crystal in which a channelled particle (electron, positron, relativistic proton, 
etc) moves be subjected to a variable external field (electromagnetic or ultrasonic). 
Under the influence of this field, crystal nuclei begin to oscillate. As a result, the channel 
in which the particle is moving begins to bend, leading to the emergence of a variable 
forcewhichcausesoscillationsoftheparticle. Asaresult, theparticle movesinadynamic 
undulator (figure 1) in the trajectory [SI 

r(0 = rch(f) + r’(0 
where rch(t) is the radius vector describing the ordinary high-frequency channelled 
particle motion and rs(f)  is the radius vector describing the motion of particle in the 
dynamic undulator. Assuming that the frequency of the external variable field, e.g. an 
ultrasonic field, is much smaller than the frequency of particle oscillation in a crystal 
channel, we can consider these two kinds of particle motion independently: the ordinary 
channelled particle motion and the motionoftheequilibrium trajectorycentreofparticle 
gravity inside the bent channel formed under the action of the external variable field. In 
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thiscase, for aparticle movingwithinachanneloriented along ther axis with an averaged 
velocity U ,  we can write the trajectory inside the dynamic oscillator as 

r ' , ( t )=acos(s2 -K .U+6)=aCOS(B ' t+6 )  (1) 
where ry ( I )  and a are the radius vector and amplitude of a particle oscillation in the n- 
y plane and 6 is the initial oscillation phase in the external field. It should be noted that, 
ifanultrasonicwaveamplitude satisfiesthecondition [8] la/ Q uU/EdK*(Eistheparticle 
energy, d is the crystal channel width and Uis the depth of the potential well for a crystal 
channel), then the radius of the channel curvature due to the action of the ultrasonic 
wave ismuch larger than the radius of the trajectorycurvature for thechannelledparticle 
incident on the crystal at the Lindhard angle. In this case the equilibrium trajectory of 
a positively charged particle gravity centre corresponds to the trajectory of a stable 
channelling regime, and the curvature of the crystal channel caused by the action of the 
ultrasonic wave leads only to the displacement A of the equilibrium trajectory centre of 
gravity during the particle movement through the crystal. That is why, for positively 
charged particles, for which a, + A S d /2  we can take into account the dechannelling 
effect because of channel curvature by considering the mean square angle of multiple 
scattering in this type of bent channel in the same way as in an amorphous medium [9,10] 
(ofis the amplitude of particle oscillation for the ordinary channelling regime). 

Themotionoftheparticleinthe twoindependent trajectoriesleadsto theappearance 
of two kinds of radiation from a relativistic particle: the component rch(t) results in the 
common channelling radiation and ry (t) leads to the radiation caused by the motion in 
the ultrasonic undulatorcorrespondingly. The frequency of the quantum emitted in such 
an undulator is determined by the equation 

w[l - pzn(w) cos I?] - 8' = 0. 

If a given frequency is over the range of thousands of kiloelectronvolts, then emitted 
photons may experience diffraction by crystal planes. As a result, such a relativistic 
emitter causes the formation of a Bragg-Laue diffraction pattern as well as an ordinary 
x-ray emitter passing through a crystal plate with a radiation angular divergence 
AI? - l/y. 

3. The dielectric constant of a crystal in the presence of external ultrasonic wave 

In the case under consideration an essential difference arises compared with the dif- 
fraction radiation from an oscillator caused by a channelled particle. This is that atomic 
(nuclear) oscillations, resulting in the formation of an ultrasonic undulator, will simul- 
taneously lead to the dielectric constant modulation in a crystal and, consequently, can 
change the diffraction process itself [ll]. Indeed, the application of an external field 
(ultrasonic or laser wave) causes the electrons in the atoms and atomic centres of gravity 
to experience forced oecillations. In the same way as for ultrasonic waves, the centres 
of gravity of atoms, denotedR,, begin to oscillate. Inasmuch as the ultrasonic frequency 
is much smaller than typical oscillation frequenciesof electrons in atoms, so the electrons 
adiabatically follow the motion of an atomic centre of gravity. In this case we may 
consider the motion of an atom as a whole. When a laser wave is applied, the situation 
is more complicated, because an electromagnetic wave directly affects not only nuclei 
hut also electrons, causing them to experience forced oscillations. In this case the 
picture of the forced oscillations for the electrons in the inner shells of atoms, whose 
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eigenfrequencies are much greater than that of a visible region, differs from the motion 
of electrons from the outer shells, whose oscillation frequencies may be smaller or close 
to an optical frequency. 

In any case, however, the electron coordinate in an atom (the coordinate of the atom 
itself) in the presence of an external field may be written as 

V G Baryshevsky and I Ya Dubovskaya 

R, = R h  f bCOS(K.ROm - Qt + 6,) (2) 

where Rom is the electron coordinate (the coordinate of the atomic centre of gravity) in 
the absence of an external field, b is the particle oscillation amplitude in the external 
field (for optical electrons or when light excites vibration transitions, b depends on Q),  
and 60 is the initial oscillation phase. 

As a result, the conductivity U of the medium may be considered from a microscopic 
viewpoint as a sum of atomic conductivities, averaged over the crystal atomic state: 

w N 

u(r; t, t') = C um(r; f ,  t ' )  = C u,jr - R, ( t ) ;  r, r'] (3) 
m =  I m=1 

where N is the number of atoms in a crystal and u(r; t ,  1') = 0 as f '  > 1. 

may he written in the form 
Itiswellknown thatin theabsenceofanexternalfield thecondudivityo(r - R,; t .  r ' )  

u(r - Rh; t ,  f')  = p ( r  - R o m ) f ( t  - t ' )  

Let us take in (3) the summation over the positions of atoms. For this purpose we shall 
introduce the Fourier transform of electron density p(r) and write 

X exp(i[r - ROm - b COS(K. R,, - Qt + 6,) . q ] } f ( r  - f ' )  

1 - -- (2n)3 / d q p ( q )  exp[iq (r - ~ o m ) ~  

= 
X ( - i )"%. (q .b )exp[ - in (K .Rom - S2+6o)]f(r-f ') 

"=-= 

where 2- is the Bessel function of nth order. 
To take the summation over m we should note that 

where V o  is the volume of a crystal lattice cell. 
As a result, we obtain 

1 
u(r; t ,  r') = -E E P(T - nK) exp(i(.r - nK). rl 

v9 r n 

x ( - i )n$n( (T  - nK). b) exp[in(Qt - &)]f(t - r'). 
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Now wecancarry out anexplicit Fourier transformation in time forMaxwell'sequations. 
We have 

D(r, w )  = E(r, w )  + (4xi /w)j(r ,  w )  

x (-i)"$"((T - n ~ )  .b)f(w + nQ)E(w + nQ) .  

The process of scattering by an electron is much faster than the oscillation period 
I/Q of an external excitation, i.e. the functionf(w) against w has a much larger width 
than Q. As a consequence, we may estimatef(w + nS2) =f(o) with a high accuracy. 

Let us now recall that, in the absence of an external field, 

where EO(r, w )  is thedielectricconstant oft he medium,^, - p(7)is theFouriertransform 
of the crystal susceptibility. On comparisonof ( 5 )  and (61, it should be noted that in the 
presence of an external field the relation 

D(r, w )  = E(r, w )  + ,yr exp(i7 . r)E(r, w )  

transforms into 

D(r, w )  = E(r, w )  + xer exp[i(7 - n ~ )  . r - ins,] 

x (-i)"$,((T - n ~ ) .  b)E(r, w + nS2) 

r.a 

where ,yra - p(7  - n ~ ) .  As a result, Maxwell's equations may be written as 

4n iw 
x (-i)n$n((T - I IK) -b)E(r, w - nS2) = - - T j o ( r ,  w )  

C 
(7) 

where 

Eo(r ,w)= 1 + ~ , y , $ O ( ~ . b ) e x p ( i ~ . r ) .  

Consecutive quantum-mechanical consideration leads to the analogous result for 

Thus, according to (7), the diffraction problem of radiation produced by a particle 
in the presence of an external field consists of the analysis of diffraction by a set of 
diffraction lattices. From (7) an important conclusion follows: if the atomic oscillation 
amplitndedue to theactionof anexternal fieldisparallel tothe systemof crystallographic 
planes relative to which diffraction is being studied or the condition T . b Q 1 is fulfilled, 
then9"- l,$n+o+ Oforatransverseultrasonicwave(b 1  thismea mean st hat radiation 
diffraction is found to be the same as that due to a crystal in the absence of external 

(7). 
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excitation. Let us assume the above-stated condition to be satisfied and proceed to the 
consideration of the intensity of radiation generated by a particle moving in an ultrasonic 
undulator, formed in a crystal by external excitation. In other situations we should take 
into account the influence of the ultrasonic wave on the dynamic photon diffraction and 
we should use for the photon wavefunction the expressions from. for example. [ll]. 

4. The spectral angular distribution of radiation 

The spectral energy density of radiation per unit of solid angle, denoted Wx,, ( n  = 
k/lkl, where k and w are the wavevector and frequency of an emitted quantum), the 
differential number of quanta, denoted Wn., = ( l / f iw)Wn,, ,  and also the polarization 
radiation parameters may be obtained, if we know the field E(r, w )  which gives a charge 
at a large distance from a crystal [12]: 
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W",, = (cr2/4z2)/E(r, w)12. (8) 
In order to determine the field E(r, w ) ,  we should solve Maxwell's equations. The 

transverse solution may be found by means of a Green function of the equation satisfying 
an equation of the form 

where CO is the transverse Green function of equation (7) with E = 1; its explicit form is 
given, for example, in [13]. With the help of G we can readily find the field of interest to 

G = Go + Go(W2/4JC2CZ)(& - l)G 

us: 
iw . 

E,(r, (0) = I Gil(r. r'; w )  >I&') d3r' (9) 

where i, I= x , y ,  z. 
According to [14]. at r-+ ic. the Green function is expressed in term of the solution 

E(-)(r, w )  of homogeneousMaxwell'sequations. which containsat infinity the incoming 
spherical wave: 

where e' is the unity polarization vector, s = 1,2; eo I e" 1 k. 
If a wave is incident on a crystal with a finite thickness, then, with r+ -s, 

(r, o) = es exp(ik. r) + constant exp(-ikr)/r. (10) 
We can show that the solutionEi-" is related to the solution E r "  of Maxwell'sequations, 
describing a plane-wave scattering by a target (crystal), in the following way: 

With the help of (9), 

E(-IEI = E(lb. 
I -t 

(11) 
exp(ikr) iw 

E,(r,w)=-- E e: 1 E:-)'* (r', w )  . jo(r', w )  d3 r ' .  r c Z E  
A~aiesult,thespectralenergydensityofphotonswithpolarizatione~may be written 

as 

I *  wz 
4x22 W;,, = -1 I (r ,  w )  . j&, w )  d3r 

j&, w )  = exp(iwr)j,(r, I )  dr = Q exp(iwt)o(r)6(r - r(t)) dt. (13) I 
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where Q is the particle charge and u(f )  is the particle velocity at a given moment. Let us 
substitute (13) into (12) and obtain 

Integration in (14) is carried out over the whole interval of particle motion. Further, we 
concentrate our attention on the radiation generated duringtlie period of motion inside 
a crystal. If the thickness of a target is large in comparison with the vacuum coherent 
length of radiation, then the contribution to intensity from the radiation generated in 
front of the crystal plate (in vacuum behind the crystal plate) may be ignored [4,5]. 

The solutions E:-)‘ which are necessary for explicit determination of dN;,, have 
been found previously [5,6] and, in the case of two-beam diffraction, they take the form 
(their expression is given for a required region inside a crystal and here we assume the 
fulfilment of geometrical conditions when we can omit the influence of the ultrasonic 
wave on photon diffraction by a crystal) 

E!-)’* = -es exp(-ik.r){<& exp[i(w/cyo)6;(L - z ) ]  + C& exp[i(w/cy,)d;(L - z)]} 

+e% exp(-ik, .r){Cll exp[i(w/cyr)61(1 - z)l  
+ C:2 exp[i(w/cvr)6XL - z)l} (15) 

where 

5”ol.Z) = 3(26?,2 - g0)/2(65 - 6;) Cl( l .2)  = sgS,/2(6S - 6;) k , = k + r  

%z = ika(1 + P I )  - (YPI * IkO(1 - P I )  + .PI)Z + 4P,g:1”2} 

B1 = Y o / Y z  Yo = k,/k yr  = k,,/k go E X 0  s: = x : $ O ( T . b ) .  

Let us substitute (15) into (14) and take into account the fact that, in the case under 
consideration, the particle trajectory and its velocity at the moment t are represented as 

r(t) = ut + r:(t)  + rch(t) = ut + acos(S2‘t + 6) + rch(l) 

u(t)  = U + u:(t)  + u,,(t) = un, - aQ’sin(R’t + 6 )  + uCh(t) 

where U is the constant component of a particle velocity. As a result, for the spectral 
angular distribution “,,,,of photonsemitted in the direction ofparticle motion (dN,, 
in the direction of diffraction and the spectral angular distribution) in the case of Laue 
diffraction one may obtain 

Z = O  

Z # O  
k, = k 

where ( ) is the average over points of entrance into a channel (both rch(t) and uCh(t) 
depend on entrance points), Tis the time of passage of a particle through a crystal plate; 
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in the general case, r&) is represented in the form rch(f) = Z,,ufcos(Qi,r + S , ) ,  where 
q i s  the particle oscillation amplitude in a straight crystal channel, Qiis the oscillation 
frequency in the laboratory frame and S,is the initial phase. 

Let us expand the exponent and containing cos(Q"r + 6) in (16) in terms of Bessel 
functions. As a consequence, the expression for radiation intensity (equation (16)) may 
be written as 

V G Barysheusky and I Ya Dubouskaya 

X exp{-i[m(B't + 6 )  + k,(,, . uf + kq(,) . rch(t)]}  

x(-i)mB,(k.a)l;'~,)Pexp 

Because of the explicit expression rch(f), all the time integrals appearing in (17) are in 
the explicit form. However, the final expression is rather awkward, but it issimplified if 
we consider the case when the frequencies of particle oscillation in a crystal and of 
forced oscillation caused by the external field differ considerably (we are interested, in 
particular, in the case Q' < QJ. In this case the frequencies of quanta emitted in a given 
direction because of these two mechanisms will also differ considerably because of 
proportionality between the radiation frequency and oscillation frequency at a given 
angle. This allows one to consider different mechanisms of radiation separately. For this 
reason we shall concentrate our attention on the radiation mechanism of interest to us 
in this paper, which is due to particle oscillations under the influence of an external field 
(i.e. oscillations due to motion in a bent channel). 

When the above is taken into account, (17) may be represented in the form 

dN:.., = (dN&)PxR + (dN:n,w)mo (18) 

q ; p  = qg=o qF = (l/c)(w - k,+ - (wP/r,)S; - mQ7. 
The first summand corresponds to parametric x-ray radiation (PXR) [15,16] whose 

intensity is compared with the parametric x-ray radiation in the absence of an external 
field but decreases by a factor of i$ulz owing to the transfer of radiation energy into 
harmonics withm # 0. Thesecondsummandcorrespondstoparticle radiationgenerated 
by its oscillations under the influence of an external field (DRO). As stated above, 
contributions to (18) from radiation caused by particle oscillations in astationary crystal 
channel are not included here. 

5. The contributions of spectral and angular intensities of radiation to a diffraction peak 

In accordance with (18) in both cases the radiation spectrum is determined by equation 

Forsufficiently thickcrystalswecanintegrateequation (18) by the heipofthe Sfunction, 
Re(q%) = (o/c)[l - P. cos 6 - ( P , / y , )  Re SL] - mQ' = 0. (19) 
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which can be obtained as a limit of equation (19). Consequently, we may derive the 
spectral or angular distribution of radiation in the ultrasonic undulator of a crystal. For 
this purpose it is necessary to consider radiation kinematics (equation (19)) in more 
detail. Inasmuch as equations (18) and (19) are analogous to the expressions for dif- 
fraction radiation from channelled particle [5,6], so we can use the analysis, carried out 
in [16,17], for the diffraction x-ray radiation in a crystal. 

According to [16,17], under diffraction conditions the radiation spectrum becomes 
very complicated. Each radiation branch, in the absence of diffraction (in this case 
E = 1 - W E / @ ' ,  ot = 4nnoe2/m,, where no is the atomic density in a crystal), is split, 
in turn, into two subbranches. 

Thus, diffraction results in the excitation of an additional branch in the complex 
Doppler effect with a frequency close to the Bragg frequency and in the formation of a 
radiation non-transparency region in the angular distribution. It should be noted that 
the radiation frequency of an additional diffraction branch changes a little with the 
radiation angle. As a result, the angular range, in which s ]gal, may considerably 
exceed the standard angular interval, characterizing the diffraction of an x-ray external 
monochromatic wave. 

Integrating (18) over frequencies, we can obtain the angular radiation distribution, 
for example, for U polarization: 

sz sin 8sin o, - sy cos cp + mQ' 
EL 

where we assume the external wave to have a linear polarization along the x axis; the 
frequency w ;  is derived from (19). 

Analysis shows that in the case under consideration the maximum in the angular 
radiation distribution is reached not when the exact Bragg diffraction condition is 
fulfilled (n = 0) but rather close to the angles, corresponding to the degeneration points 
of theDoppler effect (d&/aw = 0). A characteristic property of the angular distribution 
nearthiscritical pointisthat theradiationintensitydependsonihe thicknessasafunction 
of L3/'. If a particle possesses energy such that 1 - B * (l/yr) Re(&;), then the m a g  
nitude of the radiation frequency is almost independent of the dielectric characteristics 
of the medium. In this case we may assume that 0; = w B  = ps2/2a, + Q' = Q'(1 - 
fizcos B)-',where~~istheBraggfrequency,satisfyingthecondition (Y = 0. Asaresult, 
the integration of (18) is simplified. By integrating (18) over a solid angle with the centre 
at the diffraction angle we obtain the following expression ( L  < Labs, where Labs is the 
absorption length): 

dh':,/dw = (Q2p:L/8)azQ'2mZ[1 - 2(w/w,, + 4P:(w/w,,)']B:(w) (21) 
where w,, = 2 3 Q '  is the maximum radiation frequency, Pi is the polarization factor 
(PZ = (z: + 32:)/42:; P: = (3s; + s:)/45:) and B:(w) = Z p ~ ~ ; p ( w ) ~ '  is the func- 
tion characterizing radiation diffraction. 

Toestimate the integral number N ;  ofphotonsemitted by aparticle andcontributing 
to the diffraction peak, let us use the sharpnessof the diffraction function B:(w). 
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As a result. the integral number of photons emitted by a particle oscillating in a 
dynamic undulator and contributing to the diffraction peak at a large angle relative to 
the direction of particle motion takes the form 

W ,  = [ K Q ’ ~ L ~ ~ ~ ( W , ) I * W ~ ~ ~ / ~ ~ I ~ ~  11 
x aZQ‘’[l - 2(WB/W, , )  + 4P:(wB/W, , ) ’ ] .  (22) 

6. Conclusion 

Let uscompare (22) with the number of emitted quanta that contribute to the diffraction 
peak underconditionsfor the diffraction ofchannellingradiation. Asis well known (see, 
for example, [6 ] ) ,  the intensity of diffraction radiation generated by a particle and 
channelled in a straight crystal channel is proportional. in contrast with (22) ,  to 
(a,L2f)2. As a result, the diffraction radiation from the particle moving in a channel 
and bent by external ultrasonic wave can have an intensity larger than the diffraction 
radiation from the ordinary channelled particle if (amL2’)’ > ( a f Q f ) .  This inequality can 
be realized for a standard ultrasonic field source and, as shown by the estimations, the 
influence of this wave on dechannelling process can be ignored in this situation. In 
conclusion, it should be noted that, owing to the squared charge dependence of the 
radiation intensity, the processconsideredabove will be the most effective for relativistic 
nuclei, for which the ordinary channelling radiation is suppressed. 
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